Pipeline Accessories

Casing Spacers 4 pipes System raci

Product information
Raci casing spacers, with ball shaped skids in a completely screwless version, are extremely fast to mount.
The high flexibility of the spacers allows extreme bending of the parts.
The very high number of ball-shaped skids ensures that the pipeline load is perfectly distributed.
The round skids work with low friction and provide a high abrasion resistance.
Keeping a stock of raci spacers is easy and highly economical because very few different spacers need to be kept.
The unique non-metallic connection makes the system perfectly suitable for cathodic protected steel pipelines. Heavy duty spacers can be produced with full material skids on request. High-temperature material is also available for special requirements.
A highly shear-resistant, anti-slide butyl tape prevents the spacer rings from slipping on the pipe surface. This high-quality tape is reinforced with PE , facilitating safe functioning, even when high forces are exerted.

Our material is 100% PE and 100% recyclable.

Technical Data Material HDPE

Yield strength	$\geq 25 \mathrm{~N} / \mathrm{mm}^{2}$ (test acc. to UNI EN ISO 527-2)
Elongation at break	$>200 \%$ (test acc. to UNI EN ISO 527-2)
Hardness shore D	$64^{\circ}-$ ASTM D 2240
Operating temperature	$-20^{\circ} \mathrm{C}$ up to $+40^{\circ} \mathrm{C}$
Dielectric strength	$>37 \mathrm{kV} / \mathrm{mm}-$ ASTM D 149/64
UV stabilization	Good

Raci spacer elements fit together easily and can be fastened using a standard pipe wrench or a special tightening tool for the heavier types. No time-consuming screwing of element to element has to be done on site.
The tooth connection system allows a quick and safe mounting on the carrier pipe.
Only seven basic types of spacers provide complete coverage for all pipes from 38 to 2500 mm .
This completely metal-free system provides extremely high mechanical load capacity.

M element +N element $=$ example M / N spacer ring Each type of spacer can be assembled from long and short elements, here e.g. "M" and "N".

The right type of spacer depends on pipe sizes and the expected forces. A recommended distance between the rings and the necessary number of elements per ring can be determined using the following tables.

Casing Spacers 4 pipes - System raci
spacer

1. Choose possible types of spacers
2. When there are various choices, select the spacer according to the expected load. In case of doubt, choose the more stable type.

3. Select skid height:

- OD : Outside diameter carrier pipe
- ID : Inside diameter casing pipes
- O.Db : Outside diameter bell

Consider a clearance of height min. 12-15 mm when selecting the maximum skid height.

Skids should be min. 15 mm higher than the OD of a bell.
Number of spacers =
Length of the crossing/recommended distance +3

Rollers for spacers system raci

[^0]

A/B Type spacers

Max. load capacity $180 \mathrm{~kg} / \mathrm{ring}$
Available skid heights:
19, 36 and 50 mm Length of elements usable:
Type $A=105-122 \mathrm{~mm}$
Type $B=87-103 \mathrm{~mm}$
Width 100 mm
No special tool necessary!

OD pipe in mm min.		max. of elements per ring		max. distance recommended
55.4	65.6^{*}	-	2	1.5 m
61.3	71.5^{*}	1	1	1.5 m
67.3	77.4^{*}	2	-	1.5 m
82.9	94.4	-	3	1.5 m
89.1	104.3	1	2	1.5 m
101.1	116	3	-	1.5 m
110.8	131.2	-	4	1.5 m
116.6	137.1	1	3	1.5 m
134.7	154.8	4	-	1.5 m
150.3	175.8	2	3	1.5 m
168.5	193.5	5	-	1.5 m
193.5	$229.6^{* *}$	-	7	1.0 m
202.2	$232.2^{* *}$	6	-	1.0 m
230	$254^{* *}$	6	1	1.0 m
255	$279 * *$	7	1	1.0 m
280	$309.6 * *$	8	-	1.0 m
*S/T spacers are preferred for these sizes				
**M/N spacers are recommended for these sizes				

A Type spacers

Type	Length		Width (B)			Height (H)	
	max. load						
	$\mathbf{m m}$	inch	$\mathbf{m m}$	inch	$\mathbf{m m}$	inch	$\mathbf{k g}$
A	$113-128$	$4.5-5$	100	3.9	19	0.75	180
B	$95-110$	$3.7-4.3$	100	3.9	36	1.42	1.97

Max. Ioad has been calculated for a static state. If there are dynamic forces, these need to be considered in addition.

B Type spacers

S Type spacers

T Type spacers

Type	Length		Width (B)		Height (H)		max. load
	$\mathbf{m m}$	inch	$\mathbf{m m}$	inch	$\mathbf{m m}$	inch	$\mathbf{k g}$
S	$94-110$	$3.7-4.3$	85	3.3	19	0.8	110
T	$119-135$	$4.6-5.3$	85	3.3	19	0.8	110

Max. load has been calculated for a static state. If there are dynamic forces, these need to be considered in addition.

F/G Type spacers

Max. load capacity 500 kg/ring Available skid heights: 25,41 and 60 mm Length of elements usable:
Type $F=198-228 \mathrm{~mm}$
Type $\mathrm{G}=95-121 \mathrm{~mm}$ Width 130 mm

Use tightening clamp Type F/G, M/N, L or lever

OD pipe in mm min. max.	No. of elements per ring		max. distance recommended	
116^{*}	145^{*}	2	-	2 m
124^{*}	150^{*}	1	2	2 m
154	182	2	1	2 m
189	217	3	-	2 m
219	256	3	1	1.5 m
254	282	4	-	1.5 m
283	315	4	1	1.5 m
316	345	5	-	1.5 m

F Type spacers

G Type spacers

Type	Length		Width (B)		Height (H)		max. load
	mm	inch	mm	inch	mm	inch	kg
F	$197-$ 237	$7.7-$ 9.3	130	5.1	25,41 60	$0.98-1.61$ 2.36	500
G	$91-$ 129	$3.6-$ 5	130	5.1	25,41 60	$0.98-1.61$ 2.36	500

Max. load has been calculated for a static state. If there are dynamic forces, these need to be considered in addition.

ICD Type spacers

Max. load capacity 200 kg/ring
Available skid height 15 mm Length of elements usable: Type $\mathrm{I}=130-160 \mathrm{~mm}$ Type C $=180-250 \mathrm{~mm}$ Type $D=240-310 \mathrm{~mm}$ Width 63 mm

No special tool necessary!

OD pipe in mm min.							Nax. of elements per ring			max. distance	
42	52	1	-	-	1 m						
recommended											

I Type spacers

C Type spacers

D Type spacers

Type	Length		Width (B)			Height (H)	
	max. load						
	mm	inch	mm	inch	mm	inch	kg
I	$130-160$	$5-6.3$	63	2.5	15	0.6	200
C	$180-250$	$7-9.8$	63	2.5	15	0.6	200
D	$240-310$	$9.4-12$	63	2.5	15	0.6	200

Max. load has been calculated for a static state. If there are dynamic forces, these need to be considered in addition.

M/N Type spacers

Max. load capacity $1.000 \mathrm{~kg} /$ ring Available skid heights: 18, 36, 50, 75 and 90 mm Length of elements usable: Type $\mathrm{M}=265-320 \mathrm{~mm}$ Type $\mathrm{N}=185-240 \mathrm{~mm}$ Width 180 mm

Use tightening clamp Type F/G, M/N, L

OD pipe in mm min.		max. of elements per ring		max. distance recommended
160^{*}	201	2	-	2 m
202	227	1	2	2 m
228	252	2	1	2 m
253	286	3	-	2 m
287	311	2	2	2 m
312	337	3	1	2 m
338	395	4	-	2 m
396	421	4	1	2 m
422	505	5	-	2 m
506	590	6	-	1.5 m
591	674	7	-	1.5 m
675	759	8	-	1.5 m

*F/G spacers are recommended for these pipe sizes

M Type spacers

N Type spacers

Type	Length		Width (B)		Height (H)		max. load
	mm	inch	mm	inch	mm	inch	kg
M	$\begin{gathered} 265- \\ 320 \end{gathered}$	$\begin{aligned} & 10.4- \\ & 12.6 \end{aligned}$	180	7.1	$18,36,$	$0.7-1.42$	1000
N	$\begin{aligned} & 185- \\ & 240 \end{aligned}$	$\begin{gathered} 7.3- \\ 9.4 \end{gathered}$	180	7.1		$1.97-2.95$ 3.54	1000

Max. Ioad has been calculated for a static state. If there are dynamic forces, these need to be considered in addition.

Attention: For spacers with skids above 125 mm , the max. load capacity reduces to 50% of the given value. NEVER forget anti sliding tape.

E/H Type spacers

Max. load capacity $2.700 \mathrm{~kg} /$ ring
Available skid heights: 25, 41, 60, 90, 110, 130 mm Length of elements usable: Type E $=280-320 \mathrm{~mm}$ Type $\mathrm{H}=130-170 \mathrm{~mm}$ Width 225 mm

Use tightening clamp Type E/H

OD pipe in mm				
min.	max.	No. ofements per ring		max. distance
$306 *$	354	3	1	recommended
355	397	4	-	2 m
398	457	4	1	2 m
458	489	5	-	2 m
490	549	5	1	2 m
550	580	6	-	2 m
581	641	6	1	2 m
642	732	7	-	2 m
733	800	8	-	2 m
801	900	9	-	1.8 m
901	1000	10	-	1.8 m
1001	1099	11	-	1.8 m
1100	1191	12	-	1.8 m
1192	1283	13	-	1.8 m
1284	1374	14	-	1.5 m
1375	1466	15	-	1.5 m
1467	1558	16	-	1.2 m
1559	1650	17	-	1.2 m
1651	1741	18	-	1.2 m
1742	1833	19	-	1 m
1834	1925	20	-	1 m
1926	2108	21	-	0.8 m
2109	2200	23	-	0.7 m
2201	2292	24	-	0.7 m
			0.7 m	

E Type spacers

($)^{1}$ (1)

H Type spacers

Type	Length		Width (B)		Height (H)		max. load
	mm	inch	mm	inch	mm	inch	kg
E	$\begin{array}{\|l\|l} 280- \\ 335 \end{array}$	$\begin{aligned} & 11- \\ & 13.2 \end{aligned}$	225	8.8	$\begin{gathered} 25,41 \\ 60 \\ \hline \end{gathered}$	$\begin{gathered} 0.98-1.61 \\ 2.36 \end{gathered}$	2700
					90	3.54	
H	$\begin{aligned} & 130- \\ & 185 \end{aligned}$	$\begin{aligned} & 5.1- \\ & 7.3 \end{aligned}$	225	8.8	110, 130	4.33-5.12	

Max. load has been calculated for a static state. If there are dynamic forces, these need to be considered in addition.

Casing Spacers 4 pipes - System raci

L Type spacers

Available skid heights:
$25,50,75,100,125,150$,
175 and 200 mm
Length of element usable: Type $\mathrm{L}=280-325 \mathrm{~mm}$ Width 210 mm

Use tightening clamp Type F/G M/N, L

OD pipe in mm min.		max.	No. of elements per ring	max. distance recommended Water	
355	397	4	2.5 m	2.5 m	
450	510	5	2.5 m	2.5 m	
540	610	6	2.5 m	2.5 m	
625	715	7	2.5 m	2.5 m	
715	805	8	2.5 m	2.5 m	
805	895	9	2 m	2.5 m	
895	985	10	2 m	2.5 m	
985	1075	11	1.5 m	2.5 m	
1075	1160	12	1 m	2 m	
1160	1250	13	1 m	2 m	
1250	1340	14	1 m	2 m	
1340	1430	15	0.8 m	2 m	
1430	1520	16	0.8 m	2 m	
1520	1610	17	0.5 m	2 m	
1610	1750	18	0.5 m	2 m	

L Type spacers

Type	Length		Width (B)		Height (H)		max. load
	mm	inch	mm	inch	mm	inch	kg
$\begin{aligned} & \text { L25 } \\ & \text { L50 } \end{aligned}$	$\begin{gathered} 280-1 \\ 325 \end{gathered}$	$\begin{gathered} 11- \\ 12.8 \end{gathered}$	210	8.3	25,50	$\begin{aligned} & 0.98 \\ & 107 \end{aligned}$	3000
$\begin{aligned} & \mathrm{L} 75 \\ & \mathrm{~L} 100 \end{aligned}$					75,100	$\begin{aligned} & 2.95 \\ & 3.94 \end{aligned}$	2500
L125					125	4.92	2000
$\begin{aligned} & \text { L150 } \\ & \text { L175 } \\ & \text { L200 } \end{aligned}$					$\begin{gathered} 150,175, \\ 200 \end{gathered}$	$\begin{aligned} & 5.91 \\ & 6.89 \\ & 7.87 \end{aligned}$	1500

Max. load has been calculated for a static state. If there are dynamic forces, these need to be considered in addition.

Special Applications

You need to bring several pipes through one casing! We calculate the bundle for you or find a customized solution.

Example bundling

Spacers System raci 4 pipes with Integrated High-performance Plastic Rollers

E41 Roller Type spacers
Max. load capacity: 2000 kg Available skid height: 41 mm Length of elements usable: $280-320 \mathrm{~mm}$ Width 225 mm

Product Information

These plastic spacer rings are a combination of the tried and trusted spacers in the series E/H with additional rollers made from glass-fibre-reinforced high-performance plastic (PA 30). The roller elements have a ball shape that ensures a particularly high load capacity. The combination of materials and the stability of the roller axles mean that frictional force is reduced by up to 54% during feedthrough, in comparison to a feedthrough without rollers. As this product does not contain any metallic connecting pieces, it is absolutely suitable for deployment with cathodically-protected steel pipeline constructions.

Advantages:

- Rollers pre-installed by supplier
- Frictional force reduced by up to 54% during feedthrough
- Low roller height means they are suitable for use in tight spaces
- Completely metal-free design
- Fast and easy installation
- Our modular system ensures that this product is fully compatible with existing spacers and tools

Use tightening clamp Type E/H

OD pipe in mm from \qquad to		No. of elements per ring E41 roller H41*		max. distance recommended
355	397	4	-	2 m
398	457	4	1	2 m
458	489	5	-	2 m
490	549	5	1	2 m
550	580	6	-	2 m
581	641	6	1	2 m
642	732	7	-	2 m
733	800	8	-	1.8 m
801	900	9	-	1.8 m
901	1000	10	-	1.8 m
1001	1099	11	-	1.8 m
1100	1191	12	-	1.8 m
1192	1283	13	-	1.5 m
1284	1374	14	-	1.5 m
1375	1466	15	-	1.2 m
1467	1558	16	-	1.2 m
1559	1650	17	-	1.2 m
1651	1741	18	-	1 m
1742	1833	19	-	1 m
1834	1925	20	-	0.8 m
1926	2108	21	-	0.7 m
2109	2200	23	-	0.7 m
2201	2292	24	-	0.7 m

Demonstration Video

Installation as with system raci without rollers

[^1]Rollers for Spacers 4 pipes－System raci

Rollers for Spacers M75 and E90
－One or two rollers per element usable
－ 300 kg max．load per roller
－Roller M max．height 85 mm
－Roller E max height 110 mm
－Reduces friction more than 50\％
－Roller made from fibre－reinforced polyamide
－Wheel axle made from galvanised steel
－Easy plug－in mounting

Item	Skid height	Article No．
Roller for casing spacer M／75 Max．load $300 \mathrm{~kg} /$ Roller at vertical load	height 85 mm overall	17086
Roller for casing spacer E／90 Max．load 300 kg／Roller at vertical load	height 110 mm overall	17085

Plug rollers into the flat spacer before fastening onto pipe

Application instructions:
Before mounting please choose the right spacer and the right number of elements per ring for your application. A double ring of spacers is mounted at the end and the beginning of the crossing.

1. For preparation, pre-fix the right number of elements per ring by inserting two or three teeth. DO NOT CLOSE THE RING. Decide the spacers' position on the carrier pipe. Apply anti slide tape under each ring to avoid movement of the rings on the pipe surface.
2. To mount on the pipe, connect ends of the ring by inserting two or three teeth deep.
3. Tighten all element connections evenly until the ring is fixed on the pipe properly. Do not fasten the elements unequally.
4. The minimum overlap of the connection zones is $\mathbf{5 0 \%}$, better $2 / 3$. If the spacers are applied one or more days before insertion, the rings MUST be tightened again.

NO Special clamp for type A/B, S/T and I/C/D

Assembly with F/G tightening lever

Installation video

1

3

4

Never use an extended lever.

Casing Spacers 4 pipes - System raci

Fastening clamps at 4 pipes

- Screwless and easy fixing tool
- High quality steel lever
- Long lever allows easy application
- Hardened main steel bar
- Usable in both directions
- Left and right hand use possible
- Supplied in high quality tool box

Fastening clamps can be rented from 4 pipes.

Tightening lever for F/G spacers

- Designed for F/G spacers
- Cost effective tool for pipes up to 12 " (DN300), especially for a few rings only
- Made of stainless steel

Type	Art.-No.
F/G tightening lever	17076

Installation video
Tightening lever

[^0]: 4 pipes GmbH Sigmundstraße 182•90431 Nuremberg / Germany • Phone: +49 (0)911 81006-0 • Fax: +49 (0)911 81006-111 E-mail: info@4pipes.de • www.4pipes.de

[^1]: *Type H41 is a connecting piece with only one row of skids without rollers

